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POLYNOMIAL INVARIANTS OF 2-BRIDGE 
KNOTS THROUGH 22 CROSSINGS 

TAIZO KANENOBU AND TOSHIO SUMI 

ABSTRACT. We calculate the homfly, Kauffman, Jones, Q, and Conway polyno- 
mials of 2-bridge knots through 22 crossings and list all the pairs sharing the 
same polynomial invariants. 

1. INTRODUCTION 

A simple question for polynomial invariants of knots is: "How many knots do 
they classify?" Concerning this problem, we made a computer experiment with 
2-bridge knots, which are completely classified by Schubert [25]. We calculated 
the homfly, Kauffman, Jones, Q, and Conway polynomials of 2-bridge knots 
through 22 crossings, and searched all the pairs of 2-bridge knots having the 
same polynomial invariants. The total number of the knots is 350,207, where 
each chiral pair is counted as one knot. If a chiral pair is counted separately, 
then this amounts to 699,732. The program is written in Turbo Pascal for the 
NEC PC-9801 Series. In a sequel to this paper, we shall report on 2-bridge 
links. 

The homfly polynomial PL E Z[V"1, z51] [6, 23] of an oriented link L is 
defined, as in [20], so that 

V1PL+ - VPL- = ZPLO, 

where (L+, L_, LO) is a skein triple. Putting v = 1, we get the Conway 
polynomial VL E Z[Z] [3] (substituting (v, z) = (1, t1!2 - t-112), we get the 
Alexander polynomial), and substituting (v , z) = (t, t1/2 - 1/2), we get the 
Jones polynomial VL E Z[t? 1/2] [8]. These are skein invariants. We refer to 
[18] for the definitions of skein triple and skein equivalence. The Kauffman 
polynomial FL E Z[all, z+1] of an oriented link L is given by FL = a-WAD, 
where AD is the L-polynomial of a diagram D of L and w is the writhe of D. 
We refer to [13] for the definitions of a writhe and the L-polynomial. Putting 
a = 1 , we get the Q polynomial QL E Z[zII] [1, 7] of an unoriented link ILl, 
and substituting (a, z) = (-314, t-1/4 + t'/4), we get the Jones polynomial 
[16]. 
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If L is a 2-bridge knot or link, then we have 

(1) QL(Z) = 2z- VL(t)VL(tU1) + 1 -2z l 

where z = -t - t-I [11]. Thus, if we know the Jones polynomial of a 2- 
bridge knot or link, we can deduce the Q polynomial. In an early computer 
calculation of the polynomial invariants of 2-bridge knots and links, we found 
many pairs of 2-bridge knots and links with the same Q polynomial but distinct 
Jones polynomial, except for a reflection such as right- and left-handed trefoils. 
This has been generalized to the following theorem in [12]: 

For any positive integer N, there exist N sets of 2N 2-bridge knots S1, 
S2, * * , SN with Si = {Ki1, Ki2, ... , Ki2N} such that: all the knots in UN=1 Si 
have the same Q and Conway polynomials; all the knots in each Si are skein 
equivalent; and all the knots K11, K21, ... , KNI have mutually distinct Jones 
polynomials. 

In addition, we observe the following for 2-bridge knots through 22 crossings: 

Fact 1. PK(V, z) = PK,(v, z) if and only if VK(t) = VK'(t) and VK(Z) = 

VK (Z). 

Fact 2. K is amphichiral if and only if VK(t) = VK(t-1) (or PK(V, z) = 
PK(V-1 Z)). 

Fact 3. The number of knots having the same homfly or Kauffman polynomial 
is at most two. 

Regarding Fact 3, we can construct the following examples: 
(i) Arbitrarily many 2-bridge knots with the same Jones polynomial ([9, 

Theorem 6]). 
(ii) Arbitrarily many fibred, amphichiral, skein equivalent 2-bridge knots 

([10, Theorem 1]). 
(iii) A pair of fibred, amphichiral, skein equivalent 2-bridge knots with the 

same Kauffman polynomial ([10, Theorem 4]). 
(iv) A pair of 2-bridge knots with the same Kauffman polynomial but distinct 

Alexander polynomials ([10, Theorem 5]). 
Note that (ii) above does not necessarily include (i) because the 2-bridge knots 

constructed in (i) may have distinct Conway polynomials. For the Kauffman 
polynomial we shall give an example similar to (i) in a forthcoming paper. 

2. FORMULAS 

Let SI and S2 be the elementary braids generating the 3-braid group as 
shown in Figure 1. 

Si S2 
FIGURE 1 



POLYNOMIAL INVARIANTS OF 2-BRIDGE KNOTS THROUGH 22 CROSSINGS 773 

m even m odd 

FIGURE 2 

Let D(b1, b2, ... , bm,) be the oriented 2-bridge knot ( m is even) or link ( m 
is odd) with the corresponding diagram as shown in Figure 2. There, /1 is the 
3-braid either S2b1 S-2b2 ...S-2bm or S22b Sj2b2...S22bm depending on whether 
m is even or odd. Any 2-bridge knot or link can be put in this form. 

Let P(b1, b2, *.* bm), V(bi, b2, ..*. bm) V(bi, b2, .. . bm), 
A(b1, b2, ... , bm), and F(bi, b2, ... , bm) be the homfly, Jones, Conway, 
L, and Kauffman polynomials of D(b1, b2, ... , bmi), respectively. 

Proposition 1 ([18, Proposition 14]). There holds 

P(bi, b2, ... , bm) = (1, y)M(-bj)M(b2) M) 0 

where 

M(b)= ((1-V 2b)l 1 (v-l _ V)Z-l v2b o) 
From this proposition, we have 

Proposition 2 ([18, p.128]). There holds 

V(bi, b2, ... , bm) = (1, O)N(-b,)N(b2) N((-I)mbm 0 

where 

N(b) (bz 
I 

Proposition 3 (cf. [26]). Let V_1 = 0, Vo = 1, and Vm = V(bi, b2, ... bm) 
for m > 1. Then 

Vm= (1)mbmZVm-l + Vm-2 

for m> 1 

Therefore, if bi $ 0 for any i, then we have 

(2) degVm = m 

for m > 1 , and so the genus of D(bA, b2, . .., bm) is either m/2 or (m - 1)/2 
according as m is even or odd [4, 21]. 
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Proposition 4 ([17, Theorem 5]). There holds 

A(bO, b2, .., bm) = (1, a-', d)ST2b1-'ST-2b2-S ...ST(-1)m-'2bm-1 (o) 

where d - (a + a-1)z-1 - 1, 

/0 0 a\ z I 0\ 
S= |1 0 0) and T= -1 0 0 

\0 1 0J \Z 0 aJ 

and so 
F(bi, b2, .., bm) = a-wA(bi, b2 ...bm) 

where w =2(-bi + b2 - + (- 1)mbm). 

3. COMPUTATIONAL PROCESS 

Step 1. Enumeration. We denote by C(aj, a2, ..., ak) the unoriented 4- 
plat (or the unoriented diagram according to the context) as shown in Figure 3, 
where a is the 3-braid either SpSVa, .. SVak or Sp SVa2 ... ak according as 
k is even or odd. 

An unoriented 2-bridge knot or link, or its mirror image, is uniquely rep- 
resented as a 4-plat C(aj, a2, ..., ak) satisfying the following conditions (3) 
and (4): 

(3) al,ak>2, a2,... ,aklI > 1; 

(4) either ai = ak-i+l for all i > 1, or a =ak, a2= akl, ...,aiI = 

ak+2->, a, > ak+l-i for some i > 1. 

See [2, Proposition 12.13]. 
In order to enumerate all the 2-bridge knots and links of n crossings, we 

produce the sequences of integers a1a2 ... ak satisfying (3),(4) and 

(5) al +a2 + +ak = n. 

See [14, 22, 27]. 

k even k odd 

FIGURE 3 
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Specifically, we construct a binary tree as follows: 

2 

3 21 

4 31 22 211 

a1a2* ** ak 

ala2 **(ak + 1) ala2 *. ak1 

Then choose the sequences of integers satisfying (3)-(5) from the (n - 1)st row. 
Calculate the coprime positive integers p and q by the continued fraction 

(6) 
p 

1a + 1 
q a2 +***+ak 

The 2-fold covering space of S3 branched over C(aI, a2, ..., ak) is the 
lens space L(p, q) [3]. See also [24, p. 303]. C(aj, a2, ... , ak) is a 2-bridge 
knot if and only if p is odd; p is the determinant of the 2-bridge knot 
C(al, a2, ..., ak). 

Take out the 2-bridge knots from the C(aj, a2, .. , ak) 's and order them 
as follows: 

C(aj, a2, ..,ak) 1 (l a2 ... al 

if either p < p' or p = p' and a, = al, a2=a, ..., 
a-I=a_, ai > a 

for some i, where p and p' are the determinants of C(aj, a2, ..., ak) and 
C(a', a', ..., a'), respectively. 

Since a 2-bridge knot is invertible (cf. [2, Proposition 12.5]), we are not 
concerned with the question of knot orientation. 

Let Xn denote the ordered set of the 2-bridge knots C(aj, a2, ..., ak) sat- 
isfying the conditions (3)-(5). Let 

gKn = I Q(-aj , -a2, * .. *, -ak) I Q(aj, a2, * ,ak) E Xn} 

Then the union Xn* = in UXn is the set of all the 2-bridge knots of n crossings, 
and the intersection VWKn = Xn n Xn is the set of all the amphichiral 2-bridge 
knots of n crossings. It is known [26] that C(al, a2, ... , ak) with (3)-(5) is 
amphichiral if and only if k is even and ai = ak+ I-i for all i. The numbers 
of these sets are explicitly given in [5]. 

Step 2. Calculation of the polynomial invariants. Let K = C(aI, a2, ... , ak) 

E Xn* and p, q be obtained from (6). If q is odd (resp. even), then let 
(r, s) = (q - p, q) (resp. (q, q - p) ). Then K is the 2-bridge knot with Schu- 
bert's normal form S(p, s). The classification theorem states that S(pi, ql) 
and S(p2, q2) are isotopic if and only if Pi = P2, ql q2 (mod pi ). Also, 
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K is isotopic to D(bi, b2, ..., b), where the bi are obtained from the con- 
tinued fraction 

r 2b2+ + 2bm, 
Compute P(bl, b2, ... ,bm) and F(bl, b2, ... ,bm) using Propositions 1 and 4. 
Nextcompute V(bl, b2, . . ., bmi), V(b1, b2, ... , bm), and Q(b1, b2, ... , bm) 
by the substitutions as in the introduction. Note that PK(V, Z) = PK(V-1, Z), 

FK-(a, z) = FK(a 1, Z), VK(Z) = VK(Z), VK(t) = VK(t 1), and QK(z) = 

QK(z), where K =C -al, -a2, ..., -ak) E 3n f 

Step 3. Comparison of the polynomial invariants. We have searched for all 
pairs of 2-bridge knots through 22 crossings having the same polynomial in- 
variant. We first considered the Q polynomial. Let K be as in Step 2. Since 
the crossing number n of K equals the degree of QK(z) plus one [15, 19] 
and QK (2) = p2 [1], we sought pairs having the same Q polynomial in the set 
Xn,p = {K E In I the determinant of K is p } for each n and p. Let K1 and 
K2 be such a pair in Xn, p . We sought pairs having the same Jones polynomial 
in K1 , K2, K, , K2. To do so, we compared the four pairs: {VKI (t), VK2(t)}, 

{VKI (t), VK2(t1)}I, {VKI (t), VKI(t1)}I, {VK2(t) , VK2(t1)}I. If Ki, i = 1, 2, 
is amphichiral, we did not compare { VK, (t), VK,(t-1)} and {VKI (t), VK2()t-)} . 

When we found an equal pair, we examined their Kauffman and homfly poly- 
nomials. In addition, we compared { VKI (z), VK2 (z)} if K, and K2 had the 
same genus. 

4. COMPUTATIONAL RESULTS 

Combining Facts 1 and 2 in the introduction and Table 1, we know all the 
pairs sharing the same polynomial invariants. 

In Table 1 in the Supplement section at the end of this issue, the three num- 
bers "p q, r " represent the pair of the 2-bridge knots { S(p, q), S(p, r) } 
in Schubert's notation. If there is no mark, { S(p, ?q), S(p, ?r) } share the 
same Q polynomial. If there is a mark "V" (resp. "P", "F", "PF"), the pair 
{ S(p, q), S(p, r) } shares the Jones (resp. homfly, Kauffman, homfly and 
Kauffman) polynomial. If S(p, q) is not amphichiral, { S(p, -q), S(p, -r) } 
is also such a pair. If there is a mark "C", this pair shares the same Conway and 
Q polynomials. Note that we do not list the pair sharing only the same Conway 
polynomial. The mark "a" indicates that the knots are amphichiral. In this 
table, we have redundant information, for example, in 16 crossing knots, there 
are three pairs having the same Q polynomials: { S(429, 89), S(429, -353) }, 
{ S(429, 89), S(429, -331) }, { S(429, -353), S(429, -331) }, which means 
the triple { S(429, 89), S(429, -353), S(429, -331) } has the same Q poly- 
nomial. More complicated situations occur: Let K1 = S(1925, 569), K2 = 

S(1925, -1081), K3 = S(1925, 1229), which are 18 crossings. Then PK, = 

PK3 and FK2 = FK3, and so VKI = VK2 = VK3, QKI = QK2 = QK3, and 
VKI = VK3. Other equalities do not hold among them. Since they are not 
amphichiral, for the mirror images K1, i = 1, 2, 3, similar equalities hold. 

In Table 2, for the n-crossing 2-bridge knots, we list the numbers of Xn, 
Xn* and the pairs listed in Table 1. From this table, we obtain Figure 4, which 
presents what proportion of the 2-bridge knots fail to be determined by the 
homfly and Kauffman polynomials. 
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TABLE 2 

n # Kn # Kn* No mark V P F PF C Total 
10 45 85 2 1 0 0 0 0 3 
11 91 182 0 0 0 0 0 1 1 
12 176 341 7 3 0 0 0 0 10 
13 352 704 2 4 0 2 0 6 14 
14 693 1365 14 18 4 0 1 0 37 
15 1387 2774 17 23 1 4 0 7 52 
16 2752 5461 77 46 20 1 2 0 146 
17 5504 11008 65 73 5 10 0 27 180 
18 10965 21845 202 161 40 5 7 2 417 
19 21931 43862 229 244 13 22 0 72 580 
20 43776 87381 593 498 82 14 17 17 1221 
21 87552 175104 669 960 24 46 0 186 1885 
22 174933 349525 1607 1751 236 46 31 47 3718 

0.20/o 

- t PF/#Kn 

0.00/0 A 
10 15 20 

Crossing Numbers 

FIGURE 4 
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